SolidWorks Tutorial 5

Tic-Tac-Toe

Preparatory Vocational Training
and Advanced Vocational Training
No material may be reproduced or transmitted in any form or by any means, electronically or manually, for any purpose without the express written permission of DS SolidWorks.

The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.

Patent Notices

SolidWorks® 3D mechanical CAD software is protected by U.S. Patents 5,815,154; 6,219,049; 6,219,055; 6,611,725; 6,844,877; 6,898,560; 6,906,712; 7,079,990; 7,477,262; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,518; 7,694,238; 7,853,940, 8,305,376, and foreign patents, (e.g., EP 1,116,190 B1 and JP 3,517,643).

eDrawings® software is protected by U.S. Patent 7,184,044; U.S. Patent 7,502,027; and Canadian Patent 2,318,706.

U.S. and foreign patents pending.

Trademarks and Product Names for SolidWorks Products and Services

SolidWorks, 3D ContentCentral, 3D PartStream.NET, eDrawings, and the eDrawings logo are registered trademarks and FeatureManager is a jointly owned registered trademark of DS SolidWorks.

CircuitWorks, FloXpress, PhotoView 360, and Tol Analyst, are trademarks of DS SolidWorks.

FeatureWorks is a registered trademark of Geometric Ltd.

Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER SOFTWARE - PROPRIETARY

The Software is a “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software” and “commercial software documentation” as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government (a) for acquisition by or on behalf of civilian agencies, consistent with the policy set forth in 48 C.F.R. 12.212; or (b) for acquisition by or on behalf of units of the Department of Defense, consistent with the policies set forth in 48 C.F.R. 227.7202-1 (JUN 1995) and 227.7202-4 (JUN 1995).

In the event that you receive a request from any agency of the U.S. government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor/Manufacturer: Dassault Systèmes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.

Copyright Notices for SolidWorks Standard, Premium, Professional, and Education Products

Portions of this software © 1986-2013 Siemens Product Lifecycle Management Software Inc. All rights reserved.

This work contains the following software owned by Siemens Industry Software Limited:

- D-Cubed™ 2D DCM © 2013. Siemens Industry Software Limited. All Rights Reserved.

Portions of this software © 1998-2013 Geometric Ltd.

Portions of this software incorporate PhysX™ by NVIDIA 2006-2010.

Portions of this software © 2001-2013 Luxology, LLC. All rights reserved, patents pending.

Portions of this software © 2007-2013 DriveWorks Ltd.

Copyright 1984-2010 Adobe Systems Inc. and its licensors. All rights reserved. Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,639,593; 6,754,382; Patents Pending.

Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller and Reader are registered trademarks or trademarks of Adobe Systems Inc. in the U.S. and other countries.

For more DS SolidWorks copyright information, see Help > About SolidWorks.

Copyright Notices for SolidWorks Simulation Products

Portions of this software © 2008 Solversoft Corporation.

PCGLSS © 1992-2013 Computational Applications and System Integration, Inc. All rights reserved.

Copyright Notices for SolidWorks Enterprise PDM Product

Outside In® Viewer Technology, © 1992-2012 Oracle © 2011, Microsoft Corporation. All rights reserved.

Copyright Notices for eDrawings Products

Portions of this software © 2000-2013 Tech Soft 3D.

Portions of this software © 1995-1998 Jean-Loup Gailly and Mark Adler.

Portions of this software © 1998-2001 3Dconnexion.

Portions of this software © 1998-2013 Open Design Alliance. All rights reserved.

Portions of this software © 1995-2012 Spatial Corporation.

The eDrawings® for Windows® software is based in part on the work of the Independent JPEG Group.

Portions of eDrawings® for iPad® copyright © 2003-2005 Apple Computer Inc.
In this tutorial we will create a Tic-Tac-Toe game. The game consists of two plates that are on top of each other. In the top plate, there are holes for inserting small cylinders marked ‘X’ or ‘O’. In this exercise we repeat a lot of tools we already know and add a few others: working with configurations and the use of standard parts. Some new features in this tutorial include working with tolerances and fittings and working with patterns.

Top Plate

Work plan

First, we will create the top plate. We will do this according to the drawing below.

We will execute the following steps:

1. First, we will create the top plate with dimensions 60 x 60 x 10.
2. Then, we will make four counter bore holes.
3 Finally, we will create a pattern of 9 holes.

1 Start SolidWorks and open a new part.

2 Set the units for the part as MMGS at the bottom right of the SolidWorks screen.

3 Select the Top Plane.
 Click on the Sketch tab in the CommandManager.
 Click on Rectangle.

4 Draw a rectangle:
 1 Click on Center Rectangle in the PropertyManager.
 2 Click on the origin.
 3 Click at a random point to get the second corner.
5 Add a horizontal dimension to the sketch, as in the illustration on the right.
Change the dimension to 60 mm.
Push the <Esc> key on the keyboard to end the command.

6 Set the length of the horizontal and vertical lines to the same length:
1 Select a vertical line.
2 Push the <Ctrl> button and click on a horizontal line.
3 Click on Equal in the PropertyManager.

Tip: Remember that a blue field in the PropertyManager is a selection field. You can add elements by clicking on them in your model and you can also delete elements from it (e.g., when you have selected a wrong element).

To remove an element from the list, click on the element in the field and push the key on your keyboard. SolidWorks often asks you if you really want to remove the element from the selection field to prevent inadvertent deletions.

Tip: The sketch is not fully defined. You can determine this from the color of the lines in the sketch:

- Blue means: the sketch is not fully defined.
- Black means: the sketch is fully defined.

You can check if a sketch is fully defined in the status bar at the bottom of the screen. In SolidWorks it is not mandatory to make a fully defined sketch, but it is a
good practice to do this because it can help you to avoid a lot of problems when creating a model later.

In addition to the colors blue and black, a line in a sketch can turn red or yellow.

- **Red** or **Yellow** means: the sketch is over-defined.

Try the following: set the dimension of the height of the square. The Make Dimension Driven? message appears:

You have entered too much information because:

- The dimension you added says the height is 60 mm.
- The relation between the two lines you have created before says the height is equal to the width, which is also 60.

The height is defined twice now, and this creates a conflict in SolidWorks. You must resolve this inconsistency. In the menu that is shown above, the best thing to do is choose Cancel. The dimension will not be set.

Did you make an over-defined sketch anyway? Then, throw away (delete) dimensions and/or relations, so that the sketch is no longer over-defined.
7 Click on the **Features** tab in the **CommandManager**, and then on **Extruded Boss/Base**.
 1 Set the thickness of the plate to 10 mm.
 2 Click on **OK**.

8 Next, we will make a sketch in which we will determine the exact position of the holes:
 1 Select the **top plane** of the plate.
 2 Click on the **View Orientation** icon.
 3 Click on **Normal To**.

9 Draw another rectangle with a dimension of 46 mm. Follow the steps 4 to 6 again if you need help.

10 Click on **Exit Sketch** in the **CommandManager**.
 We will not use this sketch to make a feature.
11 Start up a new sketch:
 1 Select the top plane of the plate again.
 2 Click on Circle in the CommandManager.
 3,4 Draw a circle like the one in the illustration.

12 Set the dimension between the circle and one of the diagonal lines that you drew previously:
 1 Click on Smart Dimension in the CommandManager.
 2 Click on the center of the circle.
 3 Click on the diagonal line.
 4 Set the dimension.
 5 Change it to 15 mm.
 6 Click on OK.

13 Next, set the dimension to the other diagonal line (15 mm) and the diameter of the circle (Ø8 mm).
 Push the <Esc> key to close the Smart Dimension command.
To set an exact fitting to the hole (Ø8), execute the following steps:

1. Select a dimension (it turns blue).
2. Be sure that **Tolerance/Precision** is visible in the **PropertyManager**. Click on the double arrows to reveal it.
3. Set Tolerance type to **Fit**.
4. Select a fitting of D10 in the **Hole fit** field.
5. Click on **OK**.

Tip: In this and the following tutorials, we will be using the commands from the CommandManager more often.

At this point, you should be getting used to working with SolidWorks and might find it more convenient to use the quick menu. This quick menu can be activated by pushing the **S** on the keyboard. The most important and most frequently used commands will appear. You will see the commands and functions that are associated with the part of the menu in which you are working, so you will see different commands/functions when you are in sketch mode than when you are in feature mode.

Make a hole in this sketch click on the **Features** tab in the **CommandManager** and then on **Extruded Cut**.

Set the depth of the hole in the **PropertyManager** to **Through all** and click on **OK**.
16 We will complete the hole pattern now.
 1 Select the hole you just created.
 2 Click on the Linear Pattern icon in the CommandManager.

17 Next, set the following features:
 1 Select ONE of the diagonal lines.
 2 Check to make sure that the line appears in the selection field.
 3 Set the distance between the copies to 15 mm.
 4 Set the number of copies to 3.
 5 Whenever the copies are placed on the wrong side, click on Reverse Direction.

18 Repeat these steps in the area named Direction 2. For this purpose, select the other diagonal line. If the preview looks good to you, click on OK.

19 We will now create the mounting holes for the bolts. Click on Hole Wizard in the CommandManager.
20 Set the following features in the **PropertyManager**:

1. Select the hole type **Counter bore**.
2. Set the Standard: **ISO**.
3. Set Type: **Hex Socket Head ISO 4762**.
4. Set Size: **M5**.
5. Set the depth to **Though All**.
6. Clear **Near side countersink**.
7. Click on the **Positions** tab.

21 Next, click on the top face and then at the four corners of the sketch to position the holes. Click on **OK**.

22 The first part, the top plate is now ready. Save this file as: Slab.SLDPRT.

Tip: Make a new folder on your computer first. You can arrange all of the files by product.
Bottom Plate

Work plan

We will now create the second part, the bottom plate. We will do this in accordance with the drawing below.

Notice that this part looks very much like the first one. The perimeter dimensions and the position of the mounting holes are the same. That is why we will create a configuration from the first part to produce the second one.

23 Click on the **ConfigurationManager** tab.

24 The name of the configuration is **Default**. Double-click on this name to change it to **Top**.
25 Click your right mouse button on the upper line in the **ConfigurationManager**.
Select **Add Configuration** from the menu.

26 Set the name of the new configuration to: **Bottom**
Click on **OK**.

27 There are two configurations in the list now: **Top** (gray, non-active), and **Bottom** (black, active). We will work with the active configuration.
Click on the **FeatureManager** tab.

28 Now **Suppress** the last three features that up just made:
 1 Click on the feature **Extrude2**.
 2 Hold the Shift key on the keyboard and click on the last feature.
 3 Release the Shift key. The last three features are now selected, and a small options menu appears.
 4 Select: **Suppress** in the menu.
All holes have disappeared from the model.

29 Next, we will make some tapped holes with M5 thread.
Click on the **Hole Wizard** in the **CommandManager**.
30 Select the hole type **Straight Tap** in the **PropertyManager**.

Make sure all settings are equal to the settings in the illustration at the right.

Click on the **Positions** tab.

31 Click on the four corners of the sketch to position the holes.

Click on **OK**.
32 Whenever no thread pattern appears in the holes, then change the following settings:

1. Click the right mouse button on **Annotations** in the **FeatureManager**.
2. Select **Details**.

33 Make sure that the option **Shaded cosmetic threads** is checked.

 Click on **OK**.

34 Next, we want to hide the sketch we have used to make the holes:

1. Click with the right mouse button on the **Sketch** in the **FeatureManager**.
2. Select **Hide** in the menu.
35 Reactivate the configuration of the top plate. Click on the **ConfigurationManager** tab.

36 Double-click on the configuration **Top** in the **ConfigurationManager**.

37 Save the file.

Cylinder

Work plan

The third part is the cylinder. We will create this using the dimensions of the drawing below.

To be able to play Tic-Tac-Toe, we need to insert an X or an O at the top of each cylinder. We will do this by making two configurations of the cylinder.
38 Open a new part and set the units to MMGS.
39 Open a sketch on the Top Plane.
 Draw a circle, with the center on top of the origin.
 Set a dimension to Ø8.

40 Set the fitting to h9.
 1 Select the dimension.
 2 Set the Tolerance type to Fit in the PropertyManager.
 3 Set Shaft fit to h9.

41 Extrude the cylinder.
 Drag the height of the extrusion to 20 mm.
 Click on OK.

42 We will now make an angled edge at the top and at the bottom of the cylinder with the Chamfer command.
 Click on Chamfer in the CommandManager.
43 Click on the vertical outside face of the cylinder.
Set the sloped distance to 1 mm in the PropertyManager.
Check the angle to be 45°.
Click on OK.

44 Select the top plane of the cylinder.
Click on Sketch Text in the CommandManager.
45 Type in the capital X in the text field.
 Uncheck the option **Use document font**.
 Click on the **Font** button.

46 Check in the menu to make sure the text height is set to 4 mm, and click **OK**.

47 Click **OK** in the **PropertyManager**.
48 Rotate the model with the **Normal To** command so you can get a good view of the sketch.

Drag the letter to the center of the plane.

49 Click on the **Features** tab in the **CommandManager** and next on **Extruded Cut**.

50 Set the depth to 0.25 mm.

Click on **OK**.

51 The cylinder with the **X** is now ready. Save the file as **Cylinder.SLDPRT**.

52 To make the cylinder with the **O** we will use a second configuration.

Click on the **ConfigurationManager** tab.
53 Change the name of the current configuration (Default) to Cylinder-X.
Create a new configuration called Cylinder-O.
If necessary, compare these commands to steps 25 to 27.
Check to make sure that the configuration Cylinder-O is active (black).
Click on the FeatureManager tab.

54 With the Cylinder-O configuration active, we must hide the letter X.
1 Click on the last feature which you have made.
2 Select Suppress in the menu that appears.

55 Now, put a letter O on the top plane of the cylinder. Do this in exactly the same way as you did before with the letter X in steps 44 to 50.

56 Save the file.

Tic-Tac-Toe Assembly

57 Open a new assembly and change the units to MMGS.

58 When you did not close the two parts we just created (Slab and Cylinder) you will see the imagine on the right.
1 Click on the file Slab.
2 Click on OK.
If you did close this file, find it with the Browse... command.
59 Click on **Insert Components** in the **CommandManager**.

60 Add the same part again. Place it just below the first one.

61 Next, we have to change the configuration of the bottom plate.

1. Click on the second slab part in the **FeatureManager**.
2. Click the drop down in the menu that appears and select **Bottom** and click **OK**.

Tip: When a part is open while added to an assembly, you can only select the desired configuration AFTER putting it in the assembly. That is what we have just done.

When a part is closed, click on the **PropertyManager** and **Browse** to find it (see step 57). In the menu that appears, you can select the right configuration directly. Therefore, sometimes it is more convenient to use the Browse function anyway, even though the part is open.

62 Next, we have to align the two parts with the **mate** command.

Click on **Mate** in the **CommandManager**.
63 Select the sides of both parts as shown in the illustration.
 Click on OK.

64 Select two other sides of both parts as shown in the illustration.
 Click on OK.

65 Select the top plane of the bottom part.
Next rotate the model so you get a good view of the bottom of the top part and select the bottom plane. Click on **OK** twice.

Next, we will put the hexagon socket head screws in the model. Make sure that the **Toolbox** is added in. If unsure on how to do this refer to Tutorial 3 steps 82 and 83.

1. Open the **Design Library** in the **Task Pane**.
2. Click on **Toolbox**.
3. **ISO**.
4. **Bolts and Screws**.
5. **Hexagon Socket Head Screws**.
6. Select: **Hex Socket Head ISO 4762**.

Drag the bolt to your model. Release the mouse button at the lower edge of one of the countersink holes.
69 Set the following features in the **PropertyManager**:

1. **Size**: M5.
2. **Thread Length**: 10.
3. **Thread Display**: Cosmetic.
4. Click on **OK**.

70 Put hexagon head screws in the other holes as well.

71 Finally, the cylinders (pegs) should be placed in the holes.
Click on **Insert Components** in the **CommandManager**.

72 Play the cylinder or peg in the assembly 8 times at a random position.

Note that it does not matter if you pick an **X** or **O** cylinders. We will change four of them later.
Tip: You can use the **Insert Components** command 8 times to insert the pegs, but it is much quicker to drag the part from the **FeatureManager**, holding the <Ctrl> key. A copy of the part is made every time you do so.

73 Next, we will change the letters on four of the pegs.

1. Click on a peg in the **FeatureManager**.
2. Click the drop down in the menu that appears and select **Cylinder-X** and click **OK**.

74 Repeat this step for three other pegs.

75 Next, we have to **mate** the pegs in the holes.

Click on **Mate** in the **CommandManager**.
76 Select the two faces as shown in the illustration on the right.
 Click on OK.

77 Repeat the last step for all the pegs and select a different hole for every peg. The height of the pegs is not yet been determined. You can still move all of the pegs up and down by dragging them.

78 We will make the final mate now.
 1 Click on Multiple Mate Mode in the PropertyManager.
 2 Rotate the model so you get a good view of the INSIDE of a hole. Through the hole you can see the top plane of the bottom part. Select this plane.
79 Rotate the model again so you can see the bottom side of the pegs.

1. Select the bottom side of all pegs.
2. Click on OK.

80 The assembly is ready now. Save the file as: Tictactoe.SLDASM.

What are the main features you have learned in this tutorial?

In this tutorial we have repeated a lot of what we have seen and done before:

- Creating simple parts and shapes.
- Working with configurations.
- Working with standard parts.
- Working with the Hole Wizard.

We have also learned some new topics:

- You have set fittings at holes and/or pegs.
- You have seen how to use text in a sketch.
- You have learned some new tricks.