SOLIDWORKS® 2016

SOLIDWORKS Education Edition - Fundamentals of 3D Design and Simulation

Dassault Systèmes SolidWorks Corporation
175 Wyman Street
Waltham, MA 02451 U.S.A.
The information and the software discussed in this document are subject to change without notice and are not commitments by Dassault Systemes SolidWorks Corporation (DS SolidWorks). No material may be reproduced or transmitted in any form or by any means, electronically or manually, for any purpose without the express written permission of DS SolidWorks.

The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.

Patent Notices

SOLIDWORKS® 3D mechanical CAD and/or Simulation software is protected by U.S. Patents 5,815,154; 6,219,049; 6,219,055; 6,611,725; 6,844,877; 6,898,560; 6,906,712; 7,079,990; 7,477,262; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,318; 7,694,238; 7,853,940; 8,305,376; 8,581,302; 8,817,028; 8,910,078; 9,129,083; 9,153,072 and foreign patents, (e.g., EP 1,116,190 B1 and JP 3,517,643).

eDrawings® software is protected by U.S. Patent 7,184,044; U.S. Patent 7,502,027; and Canadian Patent 2,318,706.

U.S. and foreign patents pending.

Trademarks and Product Names for SOLIDWORKS Products and Services

SOLIDWORKS, 3D ContentCentral, 3D PartStream.NET, eDrawings, and the eDrawings logo are registered trademarks and FeatureManager is a jointly owned registered trademark of DS SolidWorks.

CircuitWorks, FloXpress, PhotoView 360, and TolAnalyst are trademarks of DS SolidWorks.

FeatureWorks is a registered trademark of Geometric Ltd.

Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER SOFTWARE - PROPRIETARY

The Software is a "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of "commercial computer software" and "commercial software documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government (a) for acquisition by or on behalf of civilian agencies, consistent with the policy set forth in 48 C.F.R. 12.212; or (b) for acquisition by or on behalf of units of the Department of Defense, consistent with the policies set forth in 48 C.F.R. 227.7202-1 (JUN 1995) and 227.7202-4 (JUN 1995).

In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor/Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.

Copyright Notices for SOLIDWORKS Standard, Premium, Professional, and Education Products

Portions of this software © 1986-2015 Siemens Product Lifecycle Management Software Inc. All rights reserved.

This work contains the following software owned by Siemens Industry Software Limited:

Portions of this software © 1998-2015 Geometric Ltd.

Portions of this software incorporate PhysX™ by NVIDIA 2006-2010.

Portions of this software © 2001-2015 Luxology, LLC. All rights reserved, patents pending.

Portions of this software © 2007-2015 DriveWorks Ltd. Copyright 1984-2010 Adobe Systems Inc. and its licensors. All rights reserved. Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,639,593; 6,754,382; Patents Pending.

Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller and Reader are registered trademarks or trademarks of Adobe Systems Inc. in the U.S. and other countries.

For more DS SolidWorks copyright information, see Help > About SOLIDWORKS.

Copyright Notices for SOLIDWORKS Simulation Products

Portions of this software © 2008 Solversoft Corporation.

PCGLSS © 1992-2014 Computational Applications and System Integration, Inc. All rights reserved.

Copyright Notices for SOLIDWORKS Standard Product

© 2011, Microsoft Corporation. All rights reserved.

Copyright Notices for SOLIDWORKS PDM Professional Product

Outside In® Viewer Technology, © 1992-2012 Oracle © 2011, Microsoft Corporation. All rights reserved.

Copyright Notices for eDrawings Products

Portions of this software © 2000-2014 Tech Soft 3D.

Portions of this software © 1995-1998 Jean-Loup Gailly and Mark Adler.

Portions of this software © 1998-2001 3Dconnexion.

Portions of this software © 1998-2014 Open Design Alliance. All rights reserved.

Portions of this software © 1995-2012 DriveWorks Ltd. Copyright 1984-2010 Adobe Systems Inc. and its licensors. All rights reserved. Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,639,593; 6,754,382; Patents Pending.

Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller and Reader are registered trademarks or trademarks of Adobe Systems Inc. in the U.S. and other countries.

For more DS SolidWorks copyright information, see Help > About SOLIDWORKS.
Contents

Introduction
To the Teacher .. 2
SOLIDWORKS Tutorials 2
My SOLIDWORKS .. 4
Certification Exams .. 4
Training Files .. 4
Educator Resources link 4
Prerequisites ... 5
Course Design Philosophy 5
Conventions Used in this Book 5
Windows 7 ... 5
Use of Color ... 6
Graphics and Graphics Cards 6
Color Schemes .. 6

Lesson 1: SOLIDWORKS Basics and the User Interface
What is the SOLIDWORKS Software? 8
Design Intent .. 10
Examples of Design Intent 11
How Features Affect Design Intent 11
File References .. 12
Object Linking and Embedding (OLE) 12
File Reference Example 13
Opening Files ... 14
Computer Memory .. 14
The SOLIDWORKS User Interface 15
Pull-down Menus .. 15
Contents

Using the Command Manager ... 16
Adding and Removing CommandManager Tabs 16
FeatureManager Design Tree ... 17
PropertyManager ... 18
Full Path Name ... 18
Selection Breadcrumbs .. 18
Task Pane ... 19
Opening Labs with the File Explorer 20
Heads-up View Toolbar .. 20
Unselectable Icons ... 20
Mouse Buttons .. 21
Keyboard Shortcuts ... 21
Multiple Monitor Displays ... 21
System Feedback ... 22
Options ... 23
Search .. 24

Lesson 2: Introduction to Sketching

2D Sketching ... 26
Stages in the Process ... 26
Saving Files ... 28
 Save ... 28
 Save As ... 28
 Save As Copy to Disk ... 28
 Save As Copy and Open .. 28
What are We Going to Sketch? 29
Sketching ... 29
 Default Planes ... 29
Sketch Entities .. 31
 Sketch Geometry .. 31
Basic Sketching ... 32
 The Mechanics of Sketching 32
 Inference Lines (Automatic Relations) 33
 Sketch Feedback ... 35
 Status of a Sketch .. 36
Rules That Govern Sketches ... 36
Design Intent .. 38
 What Controls Design Intent? 38
 Desired Design Intent ... 38
Sketch Relations ... 39
 Automatic Sketch Relations 39
 Added Sketch Relations .. 39
 Examples of Sketch Relations 41
Selecting Multiple Objects ... 43
SOLIDWORKS 2016

Dimensions .. 44
 - Dimensioning: Selection and Preview 44
 - Angular Dimensions ... 48
 - Instant 2D ... 49
Extrude ... 49
Sketching Guidelines ... 52
Exercise 1: Sketch and Extrude 1 53
Exercise 2: Sketch and Extrude 2 54
Exercise 3: Sketch and Extrude 3 55

Lesson 3: Basic Part Modeling

Basic Modeling ... 58
 - Stages in the Process ... 58
Terminology ... 59
 - Feature .. 59
 - Plane ... 59
 - Extrusion ... 59
 - Sketch .. 59
 - Boss ... 59
 - Cut ... 59
 - Fillets and Rounds .. 59
 - Design Intent .. 59
Choosing the Best Profile 60
Choosing the Sketch Plane 61
 - Planes .. 61
 - Placement of the Model .. 61
Details of the Part .. 63
 - Standard Views .. 63
 - Main Bosses ... 63
 - Best Profile ... 63
 - Sketch Plane .. 63
 - Design Intent .. 64
 - Sketching the First Feature 65
 - Extrude Options .. 66
 - Renaming Features ... 66
Boss Feature .. 67
Sketching on a Planar Face 67
 - Sketching ... 67
 - Tangent Arc Intent Zones 68
 - Autotransitioning Between Lines and Arcs 68
Cut Feature .. 70
View Selector .. 71
Using the Hole Wizard .. 72
 - Creating a Standard Hole 72
 - Counterbore Hole ... 72
Lesson 4: Patterning

Why Use Patterns? ... 112
Pattern Options .. 116
Linear Pattern .. 117
Flyout FeatureManager Design Tree 118
Skipping Instances .. 119
Geometry Patterns .. 120
Performance Evaluation 121
Circular Patterns ... 123
Exercise 9: Linear Patterns 125

Lesson 5: Revolved Features

Case Study: Handwheel 128
Stages in the Process 128
Design Intent .. 129
Revolved Features 129
Sketch Geometry of the Revolved Feature 129
Rules Governing Sketches of Revolved Features .. 131
Lesson 6: Bottom-Up Assembly Modeling
Case Study: Universal Joint ... 160
Bottom-Up Assembly .. 160
 Stages in the Process ... 160
 The Assembly .. 161
Creating a New Assembly ... 162
Position of the First Component 163
FeatureManager Design Tree and Symbols 164
 Degrees of Freedom ... 164
 Components .. 164
 Component Name ... 164
 State of the component 165
Adding Components ... 167
 Insert Component ... 167
 Moving and Rotating Components 168
Mating Components ... 169
 Mate Types and Alignment 170
 Mating Concentric and Coincident 173
 Width Mate ... 177
 Rotating Inserted Components 179
Using the Component Preview Window 180
Parallel Mate ... 181
Dynamic Assembly Motion 182
Displaying Part Configurations in an Assembly 182
The Pin .. 182
Contents

Using Part Configurations in Assemblies .. 183
 The Second Pin ... 185
 Opening a Component ... 185
 Creating Copies of Instances ... 188
 Component Hiding and Transparency 188
 Component Properties ... 190
Sub-assemblies ... 191
Smart Mates ... 192
Inserting Sub-assemblies .. 194
 Mating Sub-assemblies .. 194
 Distance Mates .. 196
 Unit System ... 196
Pack and Go ... 198
Exercise 12: Mates ... 199
Exercise 13: Gripe Grinder ... 201
Exercise 14: Using Hide and Show Component 203

Lesson 7: Linear Static Analysis

The Analysis Process .. 206
 Stages in the Process .. 206
Case Study: Stress in a Plate .. 206
Project Description ... 206
 SOLIDWORKS Simulation Interface 208
SOLIDWORKS Simulation Options ... 210
 Plot Settings ... 211
Preprocessing ... 213
 New Study ... 213
 Assigning Material Properties .. 214
 Fixtures ... 216
 Fixture Types .. 216
 Display/Hide Symbols .. 218
 External Loads .. 219
 Size and Color of Symbols ... 222
 Preprocessing Summary .. 223
Meshing ... 224
 Standard Mesh ... 224
 Curvature Based Mesh ... 224
 Blended Curvature Based Mesh .. 224
 Mesh Density ... 224
 Element Sizes .. 225
 Minimum Number of Elements in a Circle 225
 Ratio ... 226
 Mesh Quality ... 227
Processing ... 228
Lesson 8: Motion Simulation and Forces

Basic Motion Analysis ... 270
Case Study: Car Jack Analysis 270
 Problem Description 270
 Stages in the Process 271
 Driving Motion ... 274
 Gravity ... 276
Forces .. 277
 Understanding Forces 277
 Applied Forces .. 277
 Force Definition ... 277
 Force Direction .. 278
 Case 1 ... 278
 Case 2 ... 278
 Case 3 ... 279
Results ... 281
 Plot Categories .. 281
 Sub-Categories ... 281
 Resizing Plots .. 281
Exercise 18: 3D Fourbar Linkage 288
Lesson 9: Flow Simulation Analysis

Case Study: Manifold Assembly

Problem Description

Stages in the Process

Model Preparation

Internal Flow Analysis

External Flow Analysis

Manifold Analysis

Lids

Lid Thickness

Manual Lid Creation

Adding a Lid to a Part File

Adding a Lid to an Assembly File

Checking the Geometry

Internal Fluid Volume

Invalid Contacts

Project Wizard

Reference Axis

Exclude Cavities Without Flow Conditions

Adiabatic Wall

Roughness

Computational Domain

Mesh

Load Results Option

Monitoring the Solver

Goal Plot Window

Warning Messages

Post-processing

Scaling the Limits of the Legend

Changing Legend Settings

Discussion

Summary
Introduction
To the Teacher

The *SOLIDWORKS Education Edition - Fundamentals of 3D Design and Simulation* manual is designed to assist you in teaching SOLIDWORKS and SOLIDWORKS Simulation in an academic setting. This guide offers a competency-based approach to teaching 3D design concepts, analysis and techniques.

Qualified schools on subscription have access to the eBook at no cost to students. Contact your SOLIDWORKS Value Added Reseller to obtain access.

SOLIDWORKS Tutorials

Accessing the SOLIDWORKS Tutorials

To start the SOLIDWORKS Tutorials, click Help, SOLIDWORKS Tutorials. The SOLIDWORKS window is resized and a second window appears next to it with a list of the available tutorials. There are over 40 lessons in the SOLIDWORKS Tutorials. As you move the pointer over the links, an illustration of the tutorial will appear at the bottom of the window. Click the desired link to start that tutorial.

TIP: When you use SOLIDWORKS Simulation to perform analysis, click Help, SOLIDWORKS Simulation, Tutorials to access over 50 lessons and over 80 verification problems. Click Tools, Add-ins to activate SOLIDWORKS Simulation, SOLIDWORKS Motion, and SOLIDWORKS Flow Simulation.
Conventions

Set your screen resolution to 1280x1024 for optimal viewing of the tutorials.

The following icons appear in the tutorials:

Moves to the next screen in the tutorial.

💡 Represents a note or tip. It is not a link; the information is below the icon. Notes and tips provide time-saving steps and helpful hints.

🪐 You can click most buttons that appear in the lessons to flash the corresponding SOLIDWORKS button.

Open File or Set this option automatically opens the file or sets the option.

🔍 A closer look at... links to more information about a topic. Although not required to complete the tutorial, it offers more detail on the subject.

❓ Why did I... links to more information about a procedure, and the reasons for the method given. This information is not required to complete the tutorial.

📱 Show me... demonstrates with a video.

Printing the SOLIDWORKS Tutorials

If you like, you can print the SOLIDWORKS Tutorials by following this procedure:

1. On the tutorial navigation toolbar, click **Show**.

 This displays the table of contents for the SOLIDWORKS Tutorials.

2. Right-click the book representing the lesson you wish to print and select **Print...** from the shortcut menu.

 The Print Topics dialog box appears.

3. Select **Print the selected heading and all subtopics**, and click OK.

4. Repeat this process for each lesson that you want to print.
My SOLIDWORKS

My.SolidWorks.com is a community website to share, connect, and learn everything about SOLIDWORKS. My SOLIDWORKS learning contains additional video lessons and individual learning paths for your students.

Certification Exams

The Certified SOLIDWORKS Associate(CSWA) - Academic program provides free certification exams for you or your students in a proctored setting. Achieving CSWA proves the fundamentals of engineering design competency. Employers verify students job ready credentials through our online virtual tester. Schools that provide two or more courses in SOLIDWORKS-based instruction can also apply to be a Certified SOLIDWORKS Professional(CSWP) - Academic Provider.

More information and to apply can be found at www.solidworks.com/cswa-academic.

Training Files

A complete set of the various files used throughout the course can be downloaded from the following website: www.solidworks.com/EDU_Fundamentals3DDesignSim

The files are organized by lesson number. The Case Study folder within each lesson contains the files you need when presenting the lessons. The Exercises folder contains any files that are required for doing the laboratory exercises.

Educator Resources link

The Instructors Curriculum link on the SOLIDWORKS Resources tab of the Task Pane includes substantial supporting materials to aid in your course presentation. Accessing this page requires a login account for the SOLIDWORKS Customer Portal. These supporting materials afford you flexibility in scope, depth, and presentation.

1. Start SOLIDWORKS.

Using the Start menu, start the SOLIDWORKS application.

2. SOLIDWORKS Content.

Click SOLIDWORKS Resources to open the SOLIDWORKS Resources Task Pane.

Click on the Instructors Curriculum link which will take you to the SOLIDWORKS Customer Portal web page.
Prerequisites

Students attending this course are expected to have the following:

- Mechanical design experience.
- Experience with the Windows® operating system.
- Completed the online tutorials that are integrated in the SOLIDWORKS software. You can access the online tutorials by clicking Help, Online Tutorial.

Course Design Philosophy

This course is designed around a process- or task-based approach to training. A process-based training course emphasizes the processes and procedures you follow to complete a particular task. By utilizing case studies to illustrate these processes, you learn the necessary commands, options and menus in the context of completing a task.

A Note About Dimensions

The drawings and dimensions given in the lab exercises are not intended to reflect any particular drafting standard. In fact, sometimes dimensions are given in a fashion that would never be considered acceptable in industry. The reason for this is the labs are designed to encourage you to apply the information covered in class and to employ and reinforce certain techniques in modeling. As a result, the drawings and dimensions in the exercises are done in a way that complements this objective.

Conventions Used in this Book

This manual uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold Sans Serif</td>
<td>SOLIDWORKS commands and options appear in this style. For example, Features > Extruded Cut means click the Extruded Cut icon on the Features tab of the CommandManager.</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Feature names and file names appear in this style. For example, Sketch1.</td>
</tr>
<tr>
<td>_________________</td>
<td>Double lines precede and follow sections of the procedures. This provides separation between the steps of the procedure and large blocks of explanatory text. The steps themselves are numbered in sans serif bold.</td>
</tr>
</tbody>
</table>

Windows 7

The screen shots in this manual were made using the SOLIDWORKS software running on Windows 7. If you are not using Windows 7, or if you have a different theme setting, you may notice slight differences in the appearance of the menus and windows. These differences do not affect the performance of the software.
Use of Color

The SOLIDWORKS user interface makes extensive use of color to highlight selected geometry and to provide you with visual feedback. This greatly increases the intuitiveness and ease of use of the SOLIDWORKS software. To take maximum advantage of this, the training manuals are printed in full color.

Also, in many cases, we have used additional color in the illustrations to communicate concepts, identify features, and otherwise convey important information. For example, we might show the result of a filleting operation with the fillets in a different color even though, by default, the SOLIDWORKS software would not display the results in that way.

Graphics and Graphics Cards

The SOLIDWORKS software sets a new standard with best-in-class graphics. The combination of a highly reflective material and the realism of RealView Graphics is an effective tool for evaluating the quality of advanced part models and surfaces.

RealView Graphics is hardware (graphics card) support of advanced shading in real time. For example, if you rotate a part, it retains its rendered appearance throughout the rotation.

Color Schemes

Out of the box, the SOLIDWORKS software provides several predefined color schemes that control, among other things, the colors used for highlighted items, selected items, sketch relation symbols, and shaded previews of features.

We have not used the same color scheme for every case study and exercise because some colors are more visible and clear than others when used with different colored parts.

In addition, we have changed the viewport background to plain white so that the illustrations reproduce better on white paper.

As a result, because the color settings on your computer may be different than the ones used by the authors of this book, the images you see on your screen may not exactly match those in the book.

User Interface Appearance

Throughout the development of the software, there have been some cosmetic User Interface changes, intended to improve visibility, that do not affect the function of the software. As a policy, dialog images in the manuals which exhibit no functional change from the previous version are not replaced. As such, you may see a mixture of current and “old” UI dialogs and color schemes.
Upon successful completion of this lesson, you will be able to:

- Describe the key characteristics of a feature-based, parametric solid modeler.
- Distinguish between sketched and applied features.
- Identify the principal components of the SOLIDWORKS user interface.
- Explain how different dimensioning methodologies convey different design intents.
SOLIDWORKS mechanical design automation software is a feature-based, parametric solid modeling design tool which takes advantage of the easy to learn Windows graphical user interface. You can create fully associative 3D solid models with or without constraints while utilizing automatic or user defined relations to capture design intent.

The italicized terms in the previous paragraph mean:

Feature-based

Just as an assembly is made up of a number of individual piece parts, a SOLIDWORKS model is also made up of individual constituent elements. These elements are called features.

When you create a model using the SOLIDWORKS software, you work with intelligent, easy to understand geometric features such as bosses, cuts, holes, ribs, fillets, chamfers, and drafts. As the features are created they are applied directly to the work piece.

Features can be classified as either sketched or applied.

- **Sketched Features**: Based upon a 2D sketch. Generally that sketch is transformed into a solid by extrusion, rotation, sweeping or lofting.
- **Applied Features**: Created directly on the solid model. Fillets and chamfers are examples of this type of feature.

The SOLIDWORKS software graphically shows you the feature-based structure of your model in a special window called the FeatureManager® design tree. The FeatureManager design tree not only shows you the sequence in which the features were created, it gives you easy access to all the underlying associated information. You will learn more about the FeatureManager design tree throughout this course.

To illustrate the concept of feature-based modeling, consider the part shown at the right:

This part can be visualized as a collection of several different features – some of which add material, like the cylindrical boss, and some which remove material, like the blind hole.
If we were to map the individual features to their corresponding listing in the FeatureManager design tree, it would look like this:

- **Parametric**

 The dimensions and relations used to create a feature are captured and stored in the model. This not only enables you to capture your design intent, it also enables you to quickly and easily make changes to the model.

 - **Driving Dimensions**: These are the dimensions used when creating a feature. They include the dimensions associated with the sketch geometry, as well as those associated with the feature itself. A simple example of this would be a feature like a cylindrical boss. The diameter of the boss is controlled by the diameter of the sketched circle. The height of the boss is controlled by the depth to which that circle was extruded when the feature was made.

 - **Relations**: These include such information as parallelism, tangency, and concentricity. Historically, this type of information has been communicated on drawings via feature control symbols. By capturing this in the sketch, SOLIDWORKS enables you to fully capture your design intent up front, in the model.

- **Solid Modeling**

 A solid model is the most complete type of geometric model used in CAD systems. It contains all the wire frame and surface geometry necessary to fully describe the edges and faces of the model. In addition to the geometric information, it has the information called topology that relates the geometry together. An example of topology would be which faces (surfaces) meet at which edge (curve). This intelligence makes operations such as filleting as easy as selecting an edge and specifying a radius.
Fully Associative
A SOLIDWORKS model is fully associative to the drawings and assemblies that reference it. Changes to the model are automatically reflected in the associated drawings and assemblies. Likewise, you can make changes in the context of the drawing or assembly and know that those changes will be reflected back in the model.

Constraints
Geometric relationships such as parallel, perpendicular, horizontal, vertical, concentric, and coincident are just some of the constraints supported in SOLIDWORKS. In addition, equations can be used to establish mathematical relationships among parameters. By using constraints and equations, you can guarantee that design concepts such as through holes or equal radii are captured and maintained.

Design Intent
The final italicized term is design intent. This subject is worthy of its own section, as follows.

Design Intent
In order to use a parametric modeler like SOLIDWORKS efficiently, you must consider the design intent before modeling. Design intent is your plan as to how the model should behave when it is changed. The way in which the model is created governs how it will be changed. Several factors contribute to how you capture design intent:

Automatic (sketch) Relations
Based on how geometry is sketched, these relations can provide common geometric relationships between objects such as parallel, perpendicular, horizontal, and vertical.

Equations
Used to relate dimensions algebraically, they provide an external way to force changes.

Added Relations
Added to the model as it is created, relations provide another way to connect related geometry. Some common relations are concentric, tangent, coincident, and collinear.

Dimensioning
Consider your design intent when applying dimensions to a sketch. What are the dimensions that should drive the design? What values are known? Which are important for the production of the model? The way dimensions are applied to the model will determine how the geometry will change if modifications are made.

Consider the design intent in the following examples.